

Polymers: Synthesis by Alkene Chemistry

Macromolecular Alliance for Community Resources and Outreach

Contents

- Ionic polymerization
 - Propagation by Anionic Species
 - Propagation by Cationic Species
- Propagation by Radical Species
 - Free Radical
 - Reversible Activation-Deactivation
 Polymerization
 - See special topics for additional details

Chain polymerization:

Molecular Weight vs. Conversion

Step polymerization: Oligomers in flask between 0-100% conv.

Conversion is the percent of polymerizable functional groups that have been converted into backbone functional groups.

Chemistry of Ionic Polymerizations

Alkenes can act as nucleophiles, with the propagating species a carbocation. The R₁ group should be capable of stabilizing the charge.

Alkenes can also act as electrophiles, with the propagating species a carbanion. The R_2 group should be capable of stabilizing the negative charge.

Looking ahead: what might be examples of E+ and Nuc- suitable for the reaction steps above?

Cationic Polymerization

0

R

Anionic Polymerization

0

R

Basics of Radical Chemistry

1) Initiation - "create radicals"

- Apply same fundamental steps as radical halogenation to polymerization
- All of these steps are happening at the same time

 $\overset{\bigcirc}{\overset{\bigcirc}{\overset{\bigcirc}{}}}$ $\xrightarrow{}$ 2 R·

2) Propagation - "move radical"

3) Termination - "kill radicals"

- Additional step
 - Transfer

4) Transfer - "move radical to something new"

$$R \rightarrow R-H$$
 Sol·

MACRO PMSE

Free Radical Polymerization

- Just like any radical chain reaction, the first step is initiation. "make radicals"
- Note the difference in the k_d, k_i, and k_p
 - Each step has a different rate and lead to complex mechanism questions
- Common initiators are azo compounds and peroxides

Free Radical Polymerization

Macromolecular Alliance for Community Resources and Outreach

Inhibition and Retardation

- Inhibitors stop the reaction
- <u>Retarders</u> slow down the reaction

Reversible Activation-Deactivation MSE Polymerization

Control achieved by minimizing radicals and therefore side reactions

